Search results

Search for "nano silver" in Full Text gives 4 result(s) in Beilstein Journal of Nanotechnology.

Needs and challenges for assessing the environmental impacts of engineered nanomaterials (ENMs)

  • Michelle Romero-Franco,
  • Hilary A. Godwin,
  • Muhammad Bilal and
  • Yoram Cohen

Beilstein J. Nanotechnol. 2017, 8, 989–1014, doi:10.3762/bjnano.8.101

Graphical Abstract
  • fifth category (BM-U) where information is insufficient to assign a score. In a case study developed by Sass et al. [37], two types of nano-sized Silver, AGS-20 and low soluble nano-Silver, were compared to non-nano Silver (conventional Silver). Analysis using the modified GreenScreen tool suggested
  • that low soluble nano-Silver and conventional Silver were of category BM-1 given evidence of high persistence and high ecotoxicity. In contrast, the lack of data for AGS-20 suggested classification of BM-U. As the above study notes [37], the modified GreenScreen tool is not intended for quantitative
PDF
Album
Supp Info
Review
Published 05 May 2017

Influence of gold, silver and gold–silver alloy nanoparticles on germ cell function and embryo development

  • Ulrike Taylor,
  • Daniela Tiedemann,
  • Christoph Rehbock,
  • Wilfried A. Kues,
  • Stephan Barcikowski and
  • Detlef Rath

Beilstein J. Nanotechnol. 2015, 6, 651–664, doi:10.3762/bjnano.6.66

Graphical Abstract
  • design of nanoparticles with increased biosafety is highly relevant for biomedical applications. Keywords: bimetallic nanoparticles, nano gold; nano silver; ontogenesis, oocyte; reprotoxicity; spermatozoa; Review Reprotoxicology Repotoxicological studies are a mandatory part during every stage of drug
PDF
Album
Video
Full Research Paper
Published 05 Mar 2015

Effect of silver nanoparticles on human mesenchymal stem cell differentiation

  • Christina Sengstock,
  • Jörg Diendorf,
  • Matthias Epple,
  • Thomas A. Schildhauer and
  • Manfred Köller

Beilstein J. Nanotechnol. 2014, 5, 2058–2069, doi:10.3762/bjnano.5.214

Graphical Abstract
  • (osteoblasts). Conclusion: Aside from the well-studied antibacterial effect of silver, little is known about the influence of nano-silver on cell differentiation processes. Our results demonstrate that ionic or nanoparticulate silver attenuates the adipogenic and osteogenic differentiation of hMSCs even at non
  • of nano-silver by hMSCs and the influence of nanoparticulate or ionic silver on the viability and differentiation potential of these cells. The viability and adipogenic, osteogenic and chondrogenic differentiation potential were examined qualitatively and quantitatively through light and fluorescence
  • microscopy, photometry and by analyzing the secretion of typical biomarkers. Results Uptake and intracellular distribution of nano-silver in hMSCs Human MSCs were cultured in the presence of 20 µg·mL−1 Ag-NP at 37 °C for 24 h under cell culture conditions, and the cell nucleus and endo-lysosomes were labeled
PDF
Album
Full Research Paper
Published 10 Nov 2014

Antimicrobial properties of CuO nanorods and multi-armed nanoparticles against B. anthracis vegetative cells and endospores

  • Pratibha Pandey,
  • Merwyn S. Packiyaraj,
  • Himangini Nigam,
  • Gauri S. Agarwal,
  • Beer Singh and
  • Manoj K. Patra

Beilstein J. Nanotechnol. 2014, 5, 789–800, doi:10.3762/bjnano.5.91

Graphical Abstract
  • nanoparticle based deactivation of microbes for medical and healthcare applications with nano-silver taking lead in academic research as well as in commercialization [9][10][11][12]. Comparatively few reports are available on the evaluation of nanoparticles against biological warfare (BW) agents including
PDF
Album
Supp Info
Full Research Paper
Published 05 Jun 2014
Other Beilstein-Institut Open Science Activities